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Abstract

In this paper, melting effect on mixed convective heat transfer from a porous vertical plate with uniform wall temperature in the
liquid-saturated porous medium with aiding and opposing external flows is numerically examined at steady state. The resulting boundary
value problems (BVPs) are comprehensively solved by Runge–Kutta–Gill method and Newton’s iteration for similarity solutions. As
shown in the results, for aiding and opposing external flows, it is all found that the rate of convective heat transfer at the interface of
solid and liquid phases is reduced with increasing melting strength. Additionally, the melting phenomenon decreases the thermal bound-
ary layer regions of mixed convection in a porous medium. With melting effect, the heat transfer rate is also shown to be asymptotically
approaching the forced or free convection as the value of Gr/Re approaches the limits of zero and infinity for aiding external flow; and
the criteria for pure forced and mixed convection from an isothermal vertical flat plate in porous media with aiding and opposing exter-
nal flows are established in melting process.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer has been found a lot of applica-
tion in thermal engineering, including geothermal energy
recovery, oil extraction, thermal energy storage, ultra-fil-
tration, and thermal insulation. In addition, heat transfer
accompanied with melting (or solidification) effect received
numerous interests in the area of magma solidification, the
melting of permafrost, and silicon wafer process.

In the absence of porous medium, Roberts [1] firstly pre-
sented ‘‘shielding effect” to describe the melting phenom-
ena of ice placed in a hot stream of air at a steady state.
Later, from the point of view of boundary layer theory,
film theory and penetration theory, Tien and Yen [2] stud-
ied the effect of melting on convective heat transfer between
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a melting body and surrounding fluid. Epstein and Cho [3]
considered the laminar film condensation on a vertical
melting surface for 1-D and 2-D system based on Nusselt’s
method to discuss the melting rate. They pointed out that
as long as melting solid is large compared with the thick-
ness of thermal boundary layer, transient effects in the solid
would be neglected. Sparrow et al. [4] studied the velocity
and temperature fields, the heat transfer rate, and the melt-
ing layer thickness by means of finite-difference scheme in
the melting region for natural convection.

Additionally, Maples and Poirier [5] analyzed the solid-
ification phenomena of alloys with natural convection to
obtain the pressure and velocity fields as well as solute flux
in the mushy region. Voller and Prakash [6] simulated the
melting layer and velocity field in the mushy region for a
fixed grid with insulated upper and lower walls. Voller
and Brent [7] used a comprehensive method to reduce the
two-phase into a one-phase of binary solidification system.
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Nomenclature

Cf specific heat of convective fluid (J/(kg K))
Cs specific heat of solid phase (J/(kg K))
f dimensionless stream function
g acceleration due to gravity (m/s2)
Gr Grashof number defined in Eq. (12)
h local heat transfer coefficient (J/(s m2 K))
keff effective thermal conductivity (J/(s m K))
kf thermal conductivity of convective fluid

(J/(s m K))
ks thermal conductivity of porous medium

(J/(s m K))
K permeability of the porous medium (m2)
M melting parameter defined in Eq. (16)
Nu local Nusselt number defined in Eq. (18)
Pe local Peclet number defined in Eq. (7)
qw wall heat flux (J/(s m2))
Re local Reynolds number defined in Eq. (13)
T temperature in thermal boundary layer (K)
u Darcy’s velocity in x-direction (m/s)
u1 velocity of external flow (m/s)
v Darcy’s velocity in y-direction (m/s)
x coordinate along the melting plate (m)
y coordinate normal to melting plate (m)

Greek symbols

a equivalent thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
e porosity
g dimensionless similarity variable defined in Eq.

(7)
gT value of g at the edge of the thermal boundary

layer
h dimensionless temperature in Eq. (9)
k latent heat of melting of solid (J/kg)
l dynamic viscosity of fluid (kg/(s m))
m kinematic viscosity of fluid (m2/s)
qf density of convective fluid (kg/m3)
q1 density of external fluid (kg/m3)
w stream function (m2/s)

Subscripts

m melting point
1 condition at infinity
s condition at solid
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Bennon and Incropera [8,9] established a continuum model
for species transport in binary solid–liquid phase systems
through the Navier–Stokes equation and energy equation,
and then simulated the solidification in a rectangular cav-
ity. For the melting phenomena without mushy region in
the forced, free and mixed convection has also been inves-
tigated. Pozvonkov et al. [10] studied the heat transfer at
melting surface in the laminar boundary layer by using
Kàrmàn–Pohlhausen method. Epstein and Cho [11] ana-
lyzed the steady laminar flows over a flat plate by using
similarity solutions for the Nusselt number varying with
Prandtal number.

In porous medium, Kazmierczak et al. [12] presented the
similarity solutions to analyze the melting phenomenon
induced by force convection of a dissimilar fluid. Further-
more, for natural convection, Kazmierczak et al. [13] exam-
ined the similarity solutions with aiding flows from a
vertical plate to find the velocity and temperature profiles
as well as the Nusselt number. Chen et al. [14] presented
the similarity solutions for a solid immersed in a quiescent
hot fluid to analyze the melting rate.

Considering the melting effect on mixed convection from
a porous vertical plate in a fluid-saturated porous medium,
through the fourth-order Runge–Kutta method and shoot-
ing approach, Bakier [15] studied the velocity profiles for
an arbitrary wall temperature on the melting plate with aid-
ing and opposing flows. He found that the heat transfer
rate is reduced at the solid–liquid interface. But this phys-
ical model is actually not realized during phase changing
process for pure material. Therefore, Gorla et al. [16] chan-
ged the arbitrary wall temperature by a uniform wall tem-
perature at the solid–liquid interface to analyze the velocity
and temperature fields in the presence of aiding flow.
Recently, Tashtoush [17] studied the magnetic and buoy-
ancy effects to investigate the velocity, energy profiles and
heat transfer rate for melting phenomenon associated with
uniform wall temperature based on non-Darcy flow by
means of the collocation finite element method.

In the present paper, the focus is on the melting effect on
the mixed convective heat transfer from the vertical surface
in a porous medium; but the resulting boundary value
problem is comprehensively solved by using Runge–
Kutta–Gill scheme along with Newton’s iteration in the
presence of aiding and opposing flows over a vertical flat
with uniform wall temperature at steady state. This mixed
mode of convection is extended from the study of Gorla
et al. [16]. The aim of this work is to provide an alternate
numerical route solving the problem of mixed convective
heat transfer in porous medium with melting effect. Addi-
tionally, the criteria for forced, mixed and free convections
from a vertical plate in a porous medium in the presence of
melting effect are to be defined from the similarity solutions
in this study.

2. Physical model and mathematical formulation

Consider the mixed convective flow and heat transfer in
a liquid-saturated porous medium adjacent to the porous
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vertical plate, with uniform wall temperature, that consti-
tutes the interface between an incompressible Newtonian
fluid and solid phases during melting inside the porous
matrix at steady state. Fig. 1 shows the coordinates and
flow model. The x-coordinate is measured along the plate
and the y-coordinate normal to it. This work will designate
the flow condition sketched in Fig. 1a, as an aiding external
flow, where the gravitational acceleration (g) is in a direc-
tion parallel to the x-direction and the free stream velocity,
u1; on the other hand, this study will designate the flow
Fig. 1. The physical model investigated in this study: (a)
condition sketched in Fig. 1b, as an opposing external flow,
where the buoyancy force has a component parallel to the
x-direction and the free stream velocity. The temperature
on the porous vertical plate, T m, is the melting temperature
(or phase change temperature) of the material occupying
the porous matrix. The liquid phase far from the plate is
maintained at constant temperature T1 ðT1 > T mÞ. In
addition, the temperature of the solid porous medium far
from the interface is constant and is denoted by T s

ðT s < T mÞ. Additionally, it is assumed that the convective
aiding external flow and (b) opposing external flow.
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fluid and the liquid-saturated porous medium are every-
where in local thermodynamic equilibrium. Properties of
the fluid and the porous media such as viscosity (lÞ, ther-
mal conductivity, specific heats, thermal expansion coeffi-
cient (bÞ and permeability (K) are constant; and the
Darcy’s flow [18] associated with the Boussinesq approxi-
mation [19] can be applied. Therefore, the continuity,
momentum and energy transfer equations are, respectively,
given as

ou
ox
þ ov

oy
¼ 0; ð1Þ

ou
oy
¼ �Kgb

m
oT
oy
; ð2Þ

and

u
oT
ox
þ v

oT
oy
¼ a

o
2T

oy2
; ð3Þ

where u and v are Darcy’s velocity in the x and y directions;
T is temperature in thermal boundary layer; m ¼ l=q1 is
kinematic viscosity; and a ¼ keff=ðq1CfÞ is the equivalent
thermal diffusivity with denoting the product of density
(q1Þ and specific heat (Cf ) of convective fluid, and keff

the effective thermal conductivity of the saturated porous
medium given by keff ¼ ð1� eÞks þ ekf , where e, ks, and kf

are the porosity of the medium, thermal conductivity of
the solid and convective fluid, respectively. Additionally,
it is noticed that in Eq. (2), the ‘‘+” and ‘‘�” indicate cases
of aiding and opposing external flows, respectively, which
is different from the system modeled by Bakier [15].

The boundary conditions necessary to complete the
problem formulations are

y ¼ 0; T ¼ T m; keff

oT
oy
¼ qf ½kþ CsðT m � T sÞ�v; ð4Þ

and

y !1; T ¼ T1; u ¼ u1; ð5Þ

where k and Cs are latent heat of solid and specific heat of
the solid phase, respectively. Particularly, the boundary
condition (4) means that the temperature on the plate is
uniform; and the thermal flux of heat conduction to the
melting surface is equal to the heat of melting plus the sen-
sible heat required raising the temperature of solid T s to its
melting temperature T m [1,20].

The stream function w is defined by

u ¼ ow
oy
; and v ¼ � ow

ox
; ð6Þ

then continuity equation (1) will be automatically satisfied.
For similarity solution, the following transformed variables
[18] are introduced:

g ¼ y
x

Pe
1
2; ð7Þ
where Pe ¼ u1x
a , local Peclet number

w ¼ aPe1=2f ðgÞ; ð8Þ
where f ðgÞ is dimensionless stream function; and

hðgÞ ¼ T � T m

T1 � T m

: ð9Þ

In terms of new variables (7)–(9), momentum equation
(2) and energy equation (3) can be rewritten as

f 00 � Gr
Re

h0 ¼ 0; ð10Þ

and

h00 þ 1

2
f h0 ¼ 0; ð11Þ

where the primes denote differentiation with respect to the
similarity variable g; and the ratio of

Gr ¼ KgbðT1 � T mÞx
m2

ð12Þ

to

Re ¼ u1x
m

ð13Þ

is a measurement of mixed convective flow, which limiting
case of Gr/Re = 0 expresses the pure forced convection.
The corresponding boundary conditions are

g ¼ 0; h ¼ 0; f ð0Þ þ 2Mh0ð0Þ ¼ 0; ð14Þ
and

g!1; h ¼ 1; f 0 ¼ 1; ð15Þ
where

M ¼ CfðT1 � T mÞ
kþ CsðT m � T sÞ

ð16Þ

is the melting parameter combining Stefan numbers [11]

CfðT1 � T mÞ
k

and
CSðT m � T SÞ

k
ð17Þ

for the liquid and solid phases, respectively.
In practical applications, the rate of heat transfer is usu-

ally expressed as the local Nusselt number,

Nu ¼ hx
keff

¼ qwx
ðT1 � T mÞkeff

¼ h0ð0ÞPe1=2; ð18Þ

where h denotes the local heat transfer coefficient; and
qw ¼ �keff ½oT=oy�y¼0 is wall heat flux.

3. Numerical method

The above dimensionless equations (10) and (11) associ-
ated to conditions (14) and (15) are coupled in nature for
the boundary value problem and depend on the mixed con-
vection parameter Gr/Re and the melting parameter M. In
this work, a Runge–Kutta–Gill integrated method com-
bined with Newton’s iteration is employed to obtain the solu-
tions as function of the strength of melting phenomena.



Fig. 2. Validation of maximum absolute error between two successive
iterations for values of h0ð0Þ varying with parameter Gr/Re in the case of
aiding flow and melting strength M ¼ 2:0:
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This numerical scheme is robust and reliable for the stiff
system.

In convergence, the maximum absolute error between
two successive iterations is set as 10�7, which validation
is demonstrated in Fig. 2 for values of h0ð0Þ obtained from
the case of aiding external flow and melting strength M ¼ 2
varying with the mixed convective strength. The total num-
ber of computation grid in the g direction is variable
according to the mixed convective parameter to ensure
the convergence of the solution at the free stream.
Table 1
Comparison of present results with values obtained by Gorla et al. [16] for
the melting strength M ¼ 2:0 in the different mixed convective strength
with an aiding external flow

Parameter f 0ð0Þ (Gorla
et al. [16])

f 0ð0Þ
(present)

h0ð0Þ (Gorla
et al. [16])

h
(present)

M Gr
Re

2.0 0.0 1.000 1.000 0.2799 0.2706
1.4 2.400 2.400 0.3823 0.3801
3.0 4.000 4.000 0.4754 0.4745
8.0 9.000 9.000 0.6902 0.6902
10.0 11.00 11.00 0.7594 0.7594
20.0 21.00 21.00 1.038 1.0383
50.0 51.00 51.00 1.607 1.6066

Table 2
Comparison of present results with values obtained by Cheng [21] for the
opposing external flow in the case of M ¼ 0

Parameter h0ð0Þ (Cheng
[21])

h0ð0Þ
(present)

gT (Cheng
[21])

gT

(present)
M Gr

Re

0.0 0.2 0.5269 0.5270 3.8 3.8
0.4 0.4865 0.4866 3.9 3.9
0.6 0.4420 0.4421 4.2 4.2
0.8 0.3916 0.3917 4.5 4.5
1.0 0.3320 0.3321 4.9 4.9
The present work is proved by comparing with the
results obtained from Gorla et al. [16] for melting strength
M ¼ 2 in aiding external flow and Cheng [21] for melting
Fig. 3. Dependence of dimensionless velocity varying with the similarity
coordinate g on the melting parameter M for cases of (a) Gr/Re = 0; (b)
Gr/Re = 0.1; and (c) Gr/Re = 1 in the presence of aiding and opposing
external flows, respectively.



Fig. 4. Dependence of dimensionless temperature varying with the similarity coordinate g on the melting parameter M for cases of (a) Gr/Re = 0; (b)
Gr/Re = 0.1; and (c) Gr/Re = 1 in the presence of aiding and opposing external flows, respectively.
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strength M ¼ 0 in opposing external flow varying with the
mixed convective strength, as listed in Tables 1 and 2,
respectively. As shown in tables, all data from the refer-
ences are in agreement with the numerical results obtained
in this study.

4. Results and discussion

As shown in Eq. (10) and boundary condition (14), gov-
erning parameters for the problem under study are the
melting strength, M, and the mixed convective strength,
Gr/Re. The melting strength is found to compete with the
mixed convective strength for the phase change and con-
vective heat transfer in porous medium. Furthermore, the
mixed convective strength is limited by the thermal bound-
ary-layer theory for the heat transfer in liquid-saturated
porous medium with an opposing external flow. Therefore,
in this work the range of governing parameters, 0 6 M 6 2
and 0 6 Gr=Re 6 50, is selected according to the specified
system.

Fig. 3 shows the dependence of dimensionless velocity
profiles on the melting strength M for mixed convective
strength Gr/Re = 0, 0.1, and 1, respectively, for aiding
and opposing external flows. In the figure, velocity gradient
is reduced with increasing the melting strength. Addi-
tionally, it is noticed for pure forced convection, namely,
Gr/Re = 0, the velocity field is independent of melting effect
for both aiding and opposing external flows, that is the
melting process can not be disturbed by the flow field when
heat transfer is dominated by pure forced convection in
liquid-saturated porous medium. This can be further vali-
dated by the analytical solution, f 0 ¼ 1; obtained by solv-
ing Eq. (10) subject to boundary condition (15) for the
case of Gr/Re = 0.



Fig. 5. (a) The local Nusselt number varying with the melting parameter
M for (a) aiding external flow and (b) opposing external flow in the
different mixed convection strength. Fig. 6. The thickness of thermal boundary-layer varying with the melting

parameter M for (a) aiding external flow and (b) opposing external flow in
the different mixed convection strength.
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Similarly, taking Gr/Re = 0, 0.1, and 1 as examples,
Fig. 4 displays the melting effect on the temperature distri-
butions for aiding and opposing external flows, respec-
tively. As observed from the figure, thermal gradient is
reduced with increasing melting strength because convec-
tive heat transfer is inhibited from the liquid-saturated por-
ous medium to the solid porous vertical plate for cases of
aiding and opposing external flows; but the thickness of
thermal boundary layer can be reduced and thicken by
increasing the mixed convective strength for heat transfer
in a liquid-saturated porous medium with aiding and
opposing external flows, respectively, in the presence of
melting effect.

The impact of the melting strength M on the local heat
transfer rate to the plate is sketched in Fig. 5, with the help
of the Nusselt number defined in Eq. (18). As found in Fig.
5a and b, increasing value of M significantly decreases the
local heat transfer rate for both aiding and opposing exter-
nal flows. The presents are in agreement with the results
reported by Refs. [12–16] for melting phenomenon from
a vertical plate induced by forced convection of a warm
fluid. As decreasing value of M, a plateau is reached, which
features the maximum value of Nusselt number without
melting effect [12]. Fig. 6a and b correspond to the
thickness of thermal boundary layer, gT, as hðgÞ ¼
99:99%; varying with the melting strength for aiding and
opposing external flows. Clearly, increasing the melting
parameter M increases the thickness of thermal boundary
layer. Therefore, the melting process acts, in a sense, like
a blowing boundary condition at the plate and tends
thicken the thermal boundary and reduce the heat transfer
through the solid–liquid interface.

To establish the critical values of Gr/Re for forced,
mixed and free convections over a vertical plate embedded
in saturated porous medium, according the 5% deviation
rule suggested by Sparrow et al. [22], the local heat transfer
rate, with melting parameters M ¼ 0, 1, and 2, as a func-
tion of parameters Gr/Re for aiding and opposing external
flows are shown in Figs. 7 and 8, respectively. It will be of
interest to plot the corresponding expressions for pure
forced and free convections in the same figure. For aiding



Fig. 7. Melting effects on heat transfer results for aiding external flows
with (a) M ¼ 0; (b) M ¼ 1; and (c) M ¼ 2.

Fig. 8. Melting effect on heat transfer results for opposing external flow
with (a) M ¼ 0; (b) M ¼ 1; and (c) M ¼ 2.
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external flow and Gr/Re = 0, the forced convection asymp-
tote with different melting strength can be obtained as

Nu

Pe
1
2

¼ 0:5641 ½21�; for M ¼ 0; ð19Þ

Nu

Pe
1
2

¼ 0:3579; for M ¼ 1; ð20Þ

and

Nu

Pe
1
2

¼ 0:2706; for M ¼ 2: ð21Þ
On the other hand, the free convection asymptote with dif-
ferent melting strength can be expressed by

Nu

Pe
1
2

¼ 0:444
Gr
Re

� �1
2

½21�; for M ¼ 0; ð22Þ
Nu

Pe
1
2

¼ 0:291
Gr
Re

� �1
2

½13�; for M ¼ 1; ð23Þ



Table 3
The criteria of forced convection, mixed convection, and natural convec-
tion for (a) aiding external flow and (b) opposing external flow in the
different melting strength

M Forced convection Mixed convection Natural convection

(a)

0.0 0 <
Gr
Re

< 0:15 0:15 <
Gr
Re

< 16 16 <
Gr
Re

1.0 0 <
Gr
Re

< 0:146 0:146 <
Gr
Re

< 14:9 14:9 <
Gr
Re

2.0 0 <
Gr
Re

< 0:139 0:139 <
Gr
Re

< 14:5 14:5 <
Gr
Re

(b)

0.0 0 <
Gr
Re

< 0:15 0:15 <
Gr
Re

N/A

1.0 0 <
Gr
Re

< 0:146 0:146 <
Gr
Re

N/A

2.0 0 <
Gr
Re

< 0:139 0:139 <
Gr
Re

N/A
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and

Nu

Pr
1
2

¼ 0:224
Gr
Re

� �1
2

½13�; for M ¼ 2: ð24Þ

The subdivisions for forced, mixed, and free convections
with melting strengths M ¼ 0, 1, and 2 are listed in Table
3(a).

For an opposing external flow, Fig. 8 displays values of
Nu=ðPeÞ1=2 varying with Gr/Re in the presence of effects as
M ¼ 0, 1, and 2, respectively. As shown in the figure, for
small values of Gr/Re the curve approaches the forced con-
vection asymptote; and if the 5% deviation rule is again
applied, the criteria can be obtained as listed in Table
3(b). This shows the range of Gr/Re values for pure and
mixed convection are both narrowed with increasing the
melting strength. The criteria for pure free convection from
a vertical plate in liquid-saturated porous medium with
opposing external flow cannot be defined because the ther-
mal boundary layer approximation is not realized as over
limiting value of Gr/Re in this study.

5. Conclusion

In this paper, the melting effect on mixed convective heat
transfer from a solid porous vertical plate with uniform
wall temperature embedded in the liquid-saturated porous
medium has been comprehensively studied in the presence
of aiding and opposing external flows. The governing equa-
tion was derived by the boundary layer and Boussinesq
approximation. A boundary condition to account for melt-
ing was used at the interface between the solid and liquid
phases. These equations were then transferred using simi-
larity transformation and solved by the Runge–Kutta–Gill
algorithm associated with Newton’s iteration. Graphical
results regarding the velocity and temperature distributions
as well as the Nusselt number were presented and discussed
for different melting parameters. Additionally, in aiding
external flow, the criteria of Gr/Re values for forced, mixed
and free convections over a solid porous vertical plate
embedded in liquid-saturated porous medium with melting
effect were established in this work.
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